Genomic Adaptations to the Loss of a Conserved Bacterial DNA Methyltransferase

نویسندگان

  • Diego Gonzalez
  • Justine Collier
چکیده

UNLABELLED CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. IMPORTANCE In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Identification of Human Chromosome Segments that Have High Homology with Rat Genomic DNA

This study was conducted to determine the location of DNA segment with homology to the rat conserved genomic DNA in human chromosomes. The labeled rat genomic DNA was hybridized with normal human (male) metaphases. The study of 74 metaphases after fluorescence in situ hybridization showed 371 twin-spot signals on human chromosomes. Statistical analysis indicated that the specific accumulation o...

متن کامل

Rapid DNA extraction of bacterial genome of Staphylococcus aureus using laundry detergents and assessment of the efficiency of DNA in downstream process using PCR

Abstract Background and objectives: Genomic DNA extraction of bacterial cells is of processes performed normally in most biological laboratories therefore, various methods have been offered, manually and kit, which may be time consuming and costly. In this paper, genomic DNA extraction of Staphylococcus aureus was investigated using some laundry detergent brands available in Iran to achieve ...

متن کامل

Maternal Betaine Homocysteine Methyltransferase Gene Polymorphism as a Risk Factor for Trisomy

Disorder in re-methylation process of homocysteine to methionine due to mutation in betaine homocysteine methyltransferase enzyme (BHMT) coding gene, leads to decrease in S-adenosyl methionine (SAM) synthesis which takes part in DNA methylation as a methyl donor. As a result, it can promote hypo-methylation of DNA, chromosome instability, and chromosome missegregation, which in turn is one of t...

متن کامل

Are there two DNA methyltransferase gene families in plant cells? A new potential methyltransferase gene isolated from an Arabidopsis thaliana genomic library.

Using the 1kb 3' terminal DNA fragment of the mouse methyltransferase cDNA as a probe and low stringent hybridisation conditions, a new potential methyltransferase (MTase) gene family was isolated from an Arabidopsis thaliana genomic DNA library. One clone (MTase-11), which gave the strongest signal at the Northern blot, was entirely sequenced (11483 bp) and further characterised. Under conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015